منابع مشابه
The Hamming Ball Sampler
We introduce the Hamming ball sampler, a novel Markov chain Monte Carlo algorithm, for efficient inference in statistical models involving high-dimensional discrete state spaces. The sampling scheme uses an auxiliary variable construction that adaptively truncates the model space allowing iterative exploration of the full model space. The approach generalizes conventional Gibbs sampling schemes...
متن کاملHamming Ball Auxiliary Sampling for Factorial Hidden Markov Models
We introduce a novel sampling algorithm for Markov chain Monte Carlo-based Bayesian inference for factorial hidden Markov models. This algorithm is based on an auxiliary variable construction that restricts the model space allowing iterative exploration in polynomial time. The sampling approach overcomes limitations with common conditional Gibbs samplers that use asymmetric updates and become e...
متن کاملThe Generalized Gibbs Sampler and the Neighborhood Sampler
The Generalized Gibbs Sampler (GGS) is a recently proposed Markov chain Monte Carlo (MCMC) technique that is particularly useful for sampling from distributions defined on spaces in which the dimension varies from point to point or in which points are not easily defined in terms of co-ordinates. Such spaces arise in problems involving model selection and model averaging and in a number of inter...
متن کاملThe Polar Slice Sampler
This paper investigates the polar slice sampler, a particular type of the Markov chain Monte Carlo algorithm known as the slice sampler. This algorithm is shown to have convergence properties which under some circumstances are essentially independent of the dimension of the problem. For log-concave densities, the algorithm provably converges (from appropriate starting point) to within 0.01 of s...
متن کاملThe penalized profile sampler
The penalized profile sampler for semiparametric inference is an extension of the profile sampler method [9] obtained by profiling a penalized log-likelihood. The idea is to base inference on the posterior distribution obtained by multiplying a profiled penalized log-likelihood by a prior for the parametric component, where the profiling and penalization are applied to the nuisance parameter. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2017
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2016.1222288